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In the practice of laboratory experimental work directed towards studying the properties 
of porous.materials there is extensive use of studying nonsteady state filtration regimes 
for compressed fluids [1-4] which make it possible not only to determine the filtration 
parameters of porous materials, but also to evaluate the applicability of generally accep- 
ted filtration models [5, 6] for nonsteady-state flow. However, the existence of procedures 
for treating data are based on a quasistatic approximation, i.e., on the assumption of a 
slow change in pressure gradient. 

In the present work the problem is considered of rapid gas or liquid flow from one 
vessel of fixed volume to another through a specimen of porous material. An equation has 
been obtained connecting characteristic relaxation time in the system with specimen permea- 
bility. 

Let there be two communicating vessels of volume Vo and Vx separated by a porous bar- 
rier of cylindrical shape with length L and cross sectional diameter d. We assume that the 
system is filled with gas or liquid which flows isothermally from one vessel to the other 
through the barrier. The equation of state is taken in the form 

p = c~(P -- O~) + P~, (I) 

where p a n d  p are density and pressure; c is isothermal sound velocity; Pa and Pa are con- 
stants. Equation (i) describes an ideal gas when Pa = 0 and Pa = 0, and the majority of 
real liquids if the range of change in density is small, i.e., IP-- Pal/Pa<<i. 

We direct axis Ox in space so that the porous barrier is projected on section [0, L], 
and the positive direction relates to the direction from the vessel with Vo to vessel with 
Vx. Flow will be assumed to be unidimensional and to satisfy the Darcy rule [5, 6] 

k Or, (2)  
b t ,  : , =  . . . .  Ox' 

w h e r e  k a n d  ~ a r e  p e r m e a b i l i t y  a n d  v i s c o s i t y  w h i c h  a r e  a s s u m e d  t o  b e  c o n s t a n t .  

During filtration a continuity equation is satisfied 

Omp,'Ot = - -  Opu/Ox ( 3 )  

(m is porosity, which is also assumed to be constant). 

From (1)-(3) an equation follows for function p = p(t, x): 

0 9 kc ~ 0 0 
0"]- = ~ " ~  OF p" (4) 

Functions p(t, 0) and p(t, L) give the value of density in the corresponding vessels. In 
view of the law of mass conservation there are boundary conditions 

t 

Voo (t, o) = Voo (o, o) - s ~ (pu) (s, + o) ds 
0 

t 
, ~ d  z 

v , o  (t, L) = V~o (0, L) + S (pu) @, L - -  O) ds, S ,= "V-" 
o 

(5) 

From (i), (2), (5) it emerges that 
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(6) 
V op c L)=: skc2 [ opL t , ~ ,~, -~ V ~ ] ~ ,  L --  0). 

I t  i s  a s sum e d  t h a t  i n  t h e  i n i t i a l  i n s t a n t  a t  t h e  b o u n d a r y  o f  one  o f  t h e  v e s s e l s  and t h e  
p o r o u s  b a r r i e r  a jump i n  d e n s i t y  i s  c r e a t e d  ~(0, O) = P0, p(O, z) : O~ ,x~  (O, Lj. I t  I s  n o t e d  
t h a t  t h e s e  i n i t i a l  c o n d i t i o n s  assume a s p e c i a l  s e l e c t i o n  o f  f u n c t i o n a l  s p a c e  i n  w h i c h  t h e  
s o l u t i o n  o f  t h e  p r o b l e m  i s  s o u g h t .  

With  t he  p a s s a g e  o f  t i m e  d e n s i t y  i n  t h e  s y s t e m  v a r i e s  and i t  t e n d s  t o w a r d s  c o n s t a n t  Oo~, 
w h i c h  may be  d e t e r m i n e d  f r o m  t h e  law o f  mass  c o n s e r v a t i o n  p~ : (V,p0 q-V~pl + mLSp~) / (V  o + - V ,  + 
mLS). 

We consider the case where deviations of density from the limiting value are small: 
[0--p~[/0~<< I. The problem (4), (6) is converted into a linear problem 

kcg p~o 09.p Op Vo ~ oo (t, O) = ~ (t, + 0), 
r~--[ ~ m~t Ox ~ 8kc2p-'-"-~ Ot 

V,  ~ Op (t, L) = Op (t, L - - 0 ) .  
s~.~p~ at - -  ~'" 

We change over to dimensionless values: z ~- L~, t = rapL~x/(i~:~'p.), p = p~v, Po == poov~, O, = 

Ooovl, ~o = Vo/ (mSL) ,  ~, = V , / ( m S L ) .  

I n  t h e  d i m e n s i o n l e s s  s t a t e  t h e  p r o b l e m  has  t h e  f o r m  

ov 02v Ov ov Ov op 0--/- = ~ '  Po~ (x,O) =~((~, +0), PI~ (T, t )=- -~(~ ,  t--0); (7) 

fv 0, ~ = O, 
v(O'~)=w,,~ 0<~<~t. (8 )  

Now we write the functional space in which problem (7), (8) will be solved. For this 
purpose we introduce into the space of continuous complex-valued functions CC[0 , i] a scalar 
p roduc t 

J 

0 

Supplement CC[0 , I] according to the corresponding norm is a Hilbert space G. 
determine in C~[0, i] operator A by the equations 

f l  d l l  ~ - 0 ,  

I t ~! r  
(A/) (~) -- [ -- ~ ~ I , - ,  

'I~(~), ~(o,,) 

(A is a symmetrical operator in G which permits closure [7, 8]). 
of operator A by the same symbol. 

We 

We shall indicate closing 
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c~,otr,lO s MPa" see 

4 

0 Z p, MPa 4 

Fig. 3 

In view of the substance of operator A its defect indices are equal and therefore A is 
expanded to a self-conjugating operator. Self-conjugated expansion is also indicated in 

terms of A, and then D A is the region for determining A. 

Operator A has a discrete spectrum ~n (n == 0, I, ..i), ~ = 0 > LI> ..-> Ln> Ln+,> .... 

A n + --~ with n -> +~. In fact for any /E D 
1 

( / ,  , 4 i )  - -  - -~  
O 

and t h e r e f o r e  the  s p e c t r u m  of  A l i e s  on a beam ( - - ~ ,  0 ] .  S i n c e  Af = 0 w i t h  f = c o n s t ,  t hen  
Xo = 0 i s  t he  e i g e n v a l u e  o f  o p e r a t o r  A. F u r t h e r m o r e ,  l e t  )t = - - e  a, 0 > 0. We c o n s i d e r  t he  
e q u a t i o n  A ! - - L ! =  g ( [ E D  A, g~G) ,  and i t  i s  b roken  down i n t o  

( 5 + 0 2  I/(~)=g(~), ~(0, I); (9) 
% - -  

• + 0 "  / ( 0 ) = g ( 0 ) ,  - - ~ [ ~ - + 0  ~- / ( 1 ) = g ( l ) .  (10) 

From (9) i t  f o l l o w s  t h a t  w i t h  ~ [0, 11 
1 

! (g) = -ff sin e (g - -  ~l) g 01) dll + a sill 0~ + b cos 0~, ( 1 1 )  
o 

where a and b do no t  depend on ~. We s u b s t i t u t e  (11) in  (10 ) ,  t h en  

~ 0a + 0~b = g (0), 
80 

' (12) 
( ' ~, ) (fi-~" ) S ( ~  O( t - - 'q )  OsinO(t v I)) g Ol) d'q" 0 --g--cosO-~-OsinO a + O  s inO+OcosO b = g ( t ) +  cos -- -- 

O 

If the determinant 

i_ 0 ii ( ) ~o t --0 z sinO + 0  t 
- -  ~ + 0 sin 0 + 0 cos 0 

d i f f e r s  f rom z e r o ,  t h e n  s y s t e m  (12) d e t e r m i n e s  a and b as l i n e a r  c o n t i n u o u s  f u n c t i o n a l s  of  
g, and Eq. ( i1 )  i s  a l i n e a r  c o n t i n u o u s  o p e r a t o r  i n v e r s e  t o  o p e r a t o r  ( A -  XI).  In  t h i s  c a s e  
X p e r t a i n s  to  the  r e s o l v e n t  s e t  of  o p e r a t o r  A. I f  

A(O) ---- O, (13) 

then ~ = --O 2 is the eigenvalue of A. Equation (13) has a countable set of real solutions 
with a limiting point at infinity. Thus, confirmation of the spectrum of operator A is 
proven. 
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TABLE I 

Characteristics 

Lithologlcal type 
Porosity m, 10 -2 
Length L, I0-2 m 
Diameter d, i0 -2 m 
Permeability k, measured 
with a steady-state re- 
gime, ! O-z7 m 2 

Permeability calculated 
by Eq. (17), 
i0-17 m 2 

;'pec ~aen t 

Limestone 
6,7 
5,07 
2,87 

4,5 

4,2 

Spec  imeN 9- 

Sandstone 

5,t 
3,74 
2,88 

9,6 

9,t 

Let 1. l -  (~) = q.n (COS Or,~ - -  ~o0. sin O.~)]V | 2 = + 130(}+; (n=O, i .... ) be eigenfunctions correspon- 

ding to the eigenvalues of operator A-" ~=--0~, 00=0, O,<On+1. Constants ~n are found 

from the normalization condition (fn, fn) = i: 

Furthermore, we designate w an element of G prescribed by Eq. (8). Then problem (7), 
(8) is reduced to finding function v = v(T) with values in G satisfying the equation dv/dz = 
Av and the initial condition v(O) = w. This problem has a solution which may be presented 
in the form of a series 

In this way 

Jf oO ^ 2 _  

D = V (T) == eLA[L ~ = E e--t#r~ ~J,l, {~) I~" 
n=O 

Uo, w) = (~.vo + I~,vt + v#~o, 

(I,,, w) = (v o - -  v,) (Z.~o/W 1 + [gO~ (n = t ,  2 . . . .  ). 

(14) 

We consider in more detail the particular case when Bo, BI >> i, Bo/Bt ~ i. Equation 
(13) may be rewritten in the form 

tan 0 = --(~o + ~,)Ol(t - -  ~o~0~), (15) 

the solution of which determines points of intersection of the curves y = y~(0) = tan 0 and 

y = y2(8) =--(~, + ~i)8/(I---~0~182) (Fig. i). It is easy to see that 8 n >>et with n > i, and 
with z >> i/e~ the solution determines the first two terms in sum (14). From (15) we obtain 

Ot = ( I /~  o + | /~ , ) , / ,  + 0 ( I / ~ / z ) .  ( 1 6 )  

With T >> i/0~ the value of density in the system approaches exponentially a constant 
value. In dimensional values according to (16) the relaxation time 

4 = LVoV,~/ (c~p~k(  vo + V,)S). (17)  

With the aim of proving this theory a series of experiments was carried out. A diagram 
of the experimental device for studying nonsteady state filtration of fluids by the transfer 
method is shown in Fig. 2. A cylindrical specimen of porous material with a rubber ring is 
placed in core-holder 5 and it is squeezed by a system of a side hydraulic squeezer 4. 
Transfer of gas from the input vessel i to the output vessel 6 is initiated by opening valve 
3. The process of transfer is monitored by a manometer 2 and a differential manometer 7. 

Given in Fig. 3 are the results of experiments for proving Eq. (17). Experiments were 
carried out in two specimens with different average pressures and temperature T = 295@K. 
Methane gas was used as the working agent. 

The inlet vessel of the device had a volume Vo = 4.32"i0 -~ m 3, and for the outlet ves- 
sel V~ = 9.48"10 -~ m 3. Parameters for porous material specimens are given in Table i. For 
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the first specimen Bo = 198, ~I : 434, and for the second Bo : 348, BI : 764. Thus, the 
assumptions adopted with respect to Bo and B~ are satisfied. All of the tests were carried 
out at pressures up to 4.0 MPa. In recording pressure value they did not differ from the 
limiting pressure by more than 10%. This made it possible to assume a viscosity value for 
methane in all tests of p = 1.14"10 -5 Pa.sec (with a relative error not worse than • 
Calculated permeability values for average values of the product c20=tr are given in Table i. 
They agree quite well with the results of steady-state measurements. 

Thus, on the basis of the studies carried out it is possible to conclude that in the 
conditions considered the filtration process is well described by equations of an elastic 
regime. The method for determining filtration parameters according to typical relaxation 
time is new and it gives results conforming with those obtained in steady-state measurements. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

LITERATURE CITED 

S. C. Jones, "A rapid accurate unsteady-state Klinkenberg parameter," Soc. Petrol. 
Engrs. J., 12, No. 5 (1972). 
D. L. Freeman and D. C. Bush, "Low permeability laboratory measurements by nonsteady- 
state and conventional methods," Soc. Petrol. Eng. J., 23, No. 6 (1983). 
V. I. Goroyan, "Measurement of permeability for rock-collectors with nonsteady-state 
gas filtration," Tr. VNIGNI, No. 90 (1979). 
A. G. Kovalev and V. V. Pokrovskii, "Theoretical prerequisites for determining the 
permeability of rocks with nonsteady-state gas filtration and possible schemes for 
instruments operating on this principle," Tr. VNII, NTS po Dobyche Nefti, No. 42, 
Nedra, Moscow (1971). 
G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Nonsteady-State Filtration 
of Liquid and Gas [in Russian], Nedra, Moscow (1972). 
G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Movement of Liquids and Gases in 
Natural Seams [in Russian], Nedra, Moscow (1984). 
N. Dunford and J. T. Shwartz, Linear Operators. Part 2: Spectral Theory. Self-Adjoint 
Operators in Hilbert Space, Wiley (1958). 
F. Riss and B. Syokefal'vi-Nad', Lectures on Functional Analysis [in Russian], ~r, Moscow 
(1979). 

ACOUSTIC EFFECT ON THE HEAT-TRANSFER AND FLOW 

PARAmeTERS OF A COMPOUND JET IN AN INCIDENT FLOW 

A. N. Golovanov UDC 536.24 

Processes involving the interaction of small perturbations (acoustic vibrations, vibra- 
tions of a surface with gas flows), of interest in both scientific investigations and in 
practical applications, are encountered in problems dealing with the transition of a laminar 
boundary layer to a turbulent boundary layer, the sensitivity of turbulent flows to acoustic 
vibrations, and the control of the aerodynamic and thermal characteristics of power plants 
[1-3]. 

Here, we examine the effect of acoustic vibrations on heat transfer and the hydrodyna- 
mic parameters in a compound jet discharged from a system of circular holes counter to a 
free-stream flow. 

Tests were conducted in jets produced by an EDP-IO4A-50 electric-arc plasmatron, in an 
ohmic gas heater, and in the working section of a T-124 low-velocity low-turbulence wind 
tunnel. 

The models (Fig. i), made in the form of cylinders i, were positioned with their end 
counter to an incoming flow of air 2. Air 4, formed into a compound jet, was fed through 
the internal volume of the models and seven circular holes in the end part 3. The dynamic 
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